Abstract
| Original language | English |
|---|---|
| Journal | Polymers |
| Volume | 9 |
| Issue number | 6 |
| DOIs | |
| Publication status | Published - 2017 |
Keywords
- Black wattle
- Curing
- Flavonoids
- Green chemistry
- Infrared
- Natural macromolecules
- Nuclear magnetic resonance
- Formaldehyde
- Infrared radiation
- Maleic anhydride
- Monomers
- Nuclear magnetic resonance spectroscopy
- Spacecraft instruments
- Tannins
- Aromatic substitutions
- Cross-linking degree
- Fourier transform infra reds
- Proanthocyanidins
- Synthesis and characterizations
- Temperature conditions
Fingerprint
Dive into the research topics of 'Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Polymers, Vol. 9, No. 6, 2017.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy
AU - Tondi, G.
N1 - Cited By :54 Export Date: 14 December 2023 Correspondence Address: Tondi, G.; Forest Product Technology and Timber Construction Department, Marktstraße 136a, Austria; email: [email protected] References: Douglas, G.B., Wang, Y., Waghorn, G.C., Barry, T.N., Purchas, R.W., Foote, A.G., Wilson, G.F., Liveweight gain and wool production of sheep grazing Lotus corniculatus and lucerne (Medicago sativa) (1995) N. Z. J. Agric. Res., 38, pp. 95-104; Meier, H., Buchs, L., Buchala, A.J., Homewood, T., (1!3)--D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres (1981) Nature, 289, pp. 821-822; Woodings, C., (2001) Regenerated Cellulose Fibres, , Woodhead Publishing: Abington, UK; Arbenz, A., Avérous, L., Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures (2015) Green Chem., 17, pp. 2626-2646; Pizzi, A., Phenolic and tannin-based adhesive resins by reactions of coordinated metal ligands. II. Tannin adhesive preparation, characteristics, and application (1979) J. Appl. Polym. Sci., 24, pp. 1257-1268; Bisanda, E.T.N., Ogola, W.O., Tesha, J.V., Characterisation of tannin resin blends for particle board applications (2003) Cem. Concr. Compos., 25, pp. 593-598; Pizzi, A., Recent developments in eco-efficient bio-based adhesives for wood bonding: Opportunities and issues (2006) J. Adhes. Sci. Technol., 20, pp. 829-846; Jahanshahi, S., Pizzi, A., Abdulkhani, A., Shakeri, A., Analysis and testing of bisphenol A-Free bio-based tannin epoxy-acrylic adhesives (2016) Polymers, 8, p. 143; Khanbabaee, K., van Ree, T., Tannins: classification and definition (2001) Nat. Prod. Rep., 18, pp. 641-649; Bate-Smith, E.C., Swain, T., Flavonoid compounds (1962) Comp. Biochem., 3, pp. 755-809; Beckman, C.H., Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol (2000) Mol. Plant Pathol., 57, pp. 101-110; Sen, S., Tascioglu, C., Tirak, K., Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts (2009) Int. Biodeterior. Biodegrad., 63, pp. 135-141; Zhan, K., Ejima, H., Yoshie, N., Antioxidant and adsorption properties of bioinspired phenolic polymers: A comparative study of catechol and gallol (2016) ACS Sustain. Chem. Eng., 4, pp. 3857-3863; Haslam, E., (1989) Plant Polyphenols: Vegetable Tannins Revisited, , CUP Archive: Oakleigh, Australia; Pizzi, A., (1994) Advanced Wood Adhesives Technology, , CRC Press: Boca Raton, FL, USA; Pasch, H., Pizzi, A., Rode, K., MALDI-TOF mass spectrometry of polyflavonoid tannins (2001) Polymer, 42, pp. 7531-7539; Hemingway, R.W., Karchesy, J.J., (2012) Chemistry and Significance of Condensed Tannins, , Springer Science & Business Media: Berlin, Germany; Pizzi, A., Mittal, K.L., (2011) Wood Adhesives, , CRC Press: Boca Raton, FL, USA; Theis, M., Grohe, B., Biodegradable lightweight construction boards based on tannin/hexamine bonded hemp shaves (2002) Holz als Roh und Werkstoff, 60, pp. 291-296; Kain, G., Güttler, V., Barbu, M.C., Petutschnigg, A., Richter, K., Tondi, G., Density related properties of bark insulation boards bonded with tannin hexamine resin (2014) Eur. J. Wood Wood Prod., 72, pp. 417-424; Ballerini, A., Despres, A., Pizzi, A., Non-toxic, zero emission tannin-glyoxal adhesives for wood panels (2005) Holz als Roh und Werkstoff, 63, pp. 477-478; Santiago-Medina, F.J., Pizzi, A., Basso, M.C., Delmotte, L., Celzard, A., Polycondensation Resins by Flavonoid Tannins Reaction with Amines (2017) Polymers, 9, p. 37; Grigsby, W.J., Bridson, J.H., Lomas, C., Elliot, J.A., Esterification of condensed tannins and their impact on the properties of poly (lactic acid) (2013) Polymers, 5, pp. 344-360; Foo, L.Y., Hemingway, R.W., Condensed tannins: Reactions of model compounds with furfuryl alcohol and furfuraldehyde (1985) J. Wood Chem. Technol., 5, pp. 135-158; Hauptmann, M., Gindl-Altmutter, W., Hansmann, C., Bacher, M., Rosenau, T., Liebner, F., Schwanninger, M., Wood modification with tricine (2015) Holzforschung, 69, pp. 985-991; Banfi, D., Patiny, L., Resurrecting and Processing NMR Spectra On-line (2008) CHIMIA Int. J. Chem., 62, pp. 280-281; Castillo, A.M., Patiny, L., Wist, J., Fast and accurate algorithm for the simulation of NMR spectra of large spin systems (2011) J. Magn. Reson., 209, pp. 123-130; Steinbeck, C., Krause, S., Kuhn, S., NMRShiftDB constructing a free chemical information system with open-source components (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1733-1739; Pichelin, F., Kamoun, C., Pizzi, A., Hexamine hardener behaviour: Effects on wood glueing, tannin and other wood adhesives (1999) Eur. J. Wood Wood Prod., 57, pp. 305-317; Pilato, L., Phenolic Resins: A Century of Progress (2010), pp. 121-123. , Springer: New York, NY, USA; Roux, D.G., Ferreira, D., Hundt, H.K., Malan, E., Structure, stereochemistry, and reactivity of natural condensed tannins as basis for their extended industrial application (1975) Appl. Polym. Symp., 28, pp. 335-353; Grenier-Loustalot, M.F., Larroque, S., Grenier, P., Bedel, D., Phenolic resins: 4. Self-condensation of methylolphenols in formaldehyde-free media (1996) Polymer, 37, pp. 955-964; Rego, R., Adriaensens, P.J., Carleer, R.A., Gelan, J.M., Fully quantitative carbon-13 NMR characterization of resol phenol-formaldehyde prepolymer resins (2004) Polymer, 45, pp. 33-38; Pizzi, A., Stephanou, A., A comparative C13 NMR study of polyflavonoid tannin extracts for phenolic polycondensates (1993) J. Appl. Polym. Sci., 50, pp. 2105-2113; Pizzi, A., Scharfetter, H.O., The chemistry and development of tannin-based adhesives for exterior plywood (1978) J. Appl. Polym. Sci., 22, pp. 1745-1761; Kiatgrajai, P., Wellons, J.D., Gollob, L., White, J.D., Kinetics of polymerization of (+)-catechin with formaldehyde (1982) J. Org. Chem., 47, pp. 2913-2917; Pizzi, A., Valenezuela, J., Westermeyer, C., Low formaldehyde emission, fast pressing, pine and pecan tannin adhesives for exterior particleboard (1994) Eur. J. Wood Wood Prod., 52, pp. 311-315; Thevenon, M.F., Tondi, G., Pizzi, A., High performance tannin resin-boron wood preservatives for outdoor end-uses (2009) Eur. J. Wood Wood Prod., 67, pp. 89-93; Szczurek, A., Fierro, V., Pizzi, A., Stauber, M., Celzard, A., A new method for preparing tannin-based foams (2014) Ind. Crop. Prod., 54, pp. 40-53; Pena, C., De la Caba, K., Retegi, A., Ocando, C., Labidi, J., Echeverria, J., Mondragon, I., Mimosa and chestnut tannin extracts reacted with hexamine in solution (2009) J. Therm. Anal. Calorim., 96, pp. 515-521; Pichelin, F., Nakatani, M., Pizzi A.;Wieland, S., Structural beams from thick wood panels bonded industrially with formaldehyde-free tannin adhesives (2006) For. Prod. J., 56, pp. 31-36; Pizzi, A., Tekely, P., Mechanism of polyphenolic tannin resin hardening by hexamethylenetetramine: CP-MAS 13C NMR (1995) J. Appl. Polym. Sci., 56, pp. 1645-1650; Ramires, E.C., Megiatto, J.D., Gardrat, C., Castellan, A., Frollini, E., Biobased composites from glyoxal-phenolic resins and sisal fibers (2010) Bioresour. Technol., 101, pp. 1998-2006; Trivedi, B., (2013) Maleic Anhydride, , Springer Science & Business Media: Berlin, Germany; Rossouw, D.D.T., Pizzi, A., McGillivray, G., The kinetics of condensation of phenolic polyflavonoid tannins with aldehydes (1980) J. Polym. Sci. Polym. Chem. Ed., 18, pp. 3323-3343; Gandini, A., Belgacem, M.N., Furans in polymer chemistry (1997) Prog. Polym. Sci., 22, pp. 1203-1379; Abdullah, U.H.B., Pizzi, A., Tannin-furfuryl alcohol wood panel adhesives without formaldehyde (2013) Eur. J. Wood Wood Prod., 71, pp. 131-132; Luckeneder, P., Gavino, J., Kuchernig, R., Petutschnigg, A., Tondi, G., Sustainable Phenolic Fractions as Basis for Furfuryl Alcohol-Based Co-Polymers and Their Use asWood Adhesives (2016) Polymers, 8, p. 396; Link, M., Kolbitsch, C., Tondi, G., Ebner, M., Wieland, S., Petutschnigg, A., Formaldehyde-free tannin based foams and their use as lightweight panels (2011) BioResources, 6, pp. 4218-4228; Basso, M.C., Pizzi, A., Lacoste, C., Delmotte, L., Al-Marzouki, F.M., Abdalla, S., Celzard, A., MALDI-TOF and 13C NMR analysis of tannin-furanic-polyurethane foams adapted for industrial continuous lines application (2014) Polymers, 6, pp. 2985-3004; Tondi, G., Link, M., Oo, C.W., Petutschnigg, A., A simple approach to distinguish classic and formaldehyde-free tannin based rigid foams by ATR FT-IR (2015) J. Spectrosc., 2015, p. 90234; Reyer, A., Tondi, G., Berger, R.J.F., Petutschnigg, A., Musso, M., Raman spectroscopic investigation of tannin-furanic rigid foams (2016) Vib. Spectrosc., 84, pp. 58-66; Pizzi, A., Tondi, G., Pasch, H., Celzard, A., Matrix-assisted laser desorption/ionization time-of-flight structure determination of complex thermoset networks: Polyflavonoid tannin-furanic rigid foams (2008) J. Appl. Polym. Sci., 110, pp. 1451-1456; Tondi, G., Petutschnigg, A., Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts (2015) Ind. Crop. Prod., 65, pp. 422-428; Coates, J., Interpretation of infrared spectra, a practical approach (2000) Encyclopedia of Analytical Chemistry, , Wiley Online Library: Hoboken, NJ, USA
PY - 2017
Y1 - 2017
N2 - In recent years, the interest for bio-sources is rising exponentially and tannins extracts are one of the most interesting, easily-available, phenolic building blocks. The condensed tannins or proanthocyanidins are already known for their polymerization chemistry, which is the basis for several natural-based materials (e.g., adhesives, foams). In the present work we aim to observe the behavior of the extract of Acacia Mimosa (Acacia mearnsii) when reacted with several possible co-monomers at different relative amount, pH and temperature conditions. The more insoluble copolymers obtained with formaldehyde, hexamine, glyoxal, maleic anhydride, furfural and furfuryl alcohol were analyzed through solid state 13C NMR (Nuclear magnetic resonance) and FT-IR (Fourier Transform-Infrared) spectroscopy. The 13C NMR afforded the opportunity to detect: (i) aromatic substitutions and consequent poly-condensations for the majority of the hardeners studied; (ii) acylation for the maleic anhydride and also some; (iii) Diels-Alder arrangements for the furanic co-monomers; the FT-IR spectroscopy suggested that the formaldehyde and hexamine copolymers present a higher cross-linking degree. © 2017 by the author.
AB - In recent years, the interest for bio-sources is rising exponentially and tannins extracts are one of the most interesting, easily-available, phenolic building blocks. The condensed tannins or proanthocyanidins are already known for their polymerization chemistry, which is the basis for several natural-based materials (e.g., adhesives, foams). In the present work we aim to observe the behavior of the extract of Acacia Mimosa (Acacia mearnsii) when reacted with several possible co-monomers at different relative amount, pH and temperature conditions. The more insoluble copolymers obtained with formaldehyde, hexamine, glyoxal, maleic anhydride, furfural and furfuryl alcohol were analyzed through solid state 13C NMR (Nuclear magnetic resonance) and FT-IR (Fourier Transform-Infrared) spectroscopy. The 13C NMR afforded the opportunity to detect: (i) aromatic substitutions and consequent poly-condensations for the majority of the hardeners studied; (ii) acylation for the maleic anhydride and also some; (iii) Diels-Alder arrangements for the furanic co-monomers; the FT-IR spectroscopy suggested that the formaldehyde and hexamine copolymers present a higher cross-linking degree. © 2017 by the author.
KW - Black wattle
KW - Curing
KW - Flavonoids
KW - Green chemistry
KW - Infrared
KW - Natural macromolecules
KW - Nuclear magnetic resonance
KW - Formaldehyde
KW - Infrared radiation
KW - Maleic anhydride
KW - Monomers
KW - Nuclear magnetic resonance spectroscopy
KW - Spacecraft instruments
KW - Tannins
KW - Aromatic substitutions
KW - Cross-linking degree
KW - Fourier transform infra reds
KW - Proanthocyanidins
KW - Synthesis and characterizations
KW - Temperature conditions
U2 - 10.3390/polym9060223
DO - 10.3390/polym9060223
M3 - Article
SN - 2073-4360
VL - 9
JO - Polymers
JF - Polymers
IS - 6
ER -