Abstract
| Original language | English |
|---|---|
| Journal | Polymers |
| Volume | 13 |
| Issue number | 24 |
| DOIs | |
| Publication status | Published - 17 Dec 2021 |
Keywords
- Cement-bonded bark-based composite materials
- Larch
- Spruce
- Tree bark
- Aggregates
- Binders
- Cements
- Compressive strength
- Curing
- Forestry
- Admixture
- Bonded composites
- Cement-bonded bark-based composite material
- Composites material
- Curing behavior
- Property
- Temperature profiles
- Tree barks
- Composite materials
Fingerprint
Dive into the research topics of 'Selected Properties of Cement Bound Spruce and Larch Bark Bio-Aggregates'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Polymers, Vol. 13, No. 24, 17.12.2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Selected Properties of Cement Bound Spruce and Larch Bark Bio-Aggregates
AU - Urstöger, J.
AU - Barbu, M.C.
AU - Pacher, T.
AU - Petutschnigg, A.
AU - Jorda, J.
AU - Tudor, E.M.
N1 - Cited By :2 Export Date: 14 December 2023 Correspondence Address: Tudor, E.M.; Forest Products Technology and Timber Construction Department, Markt 136 a, Austria; email: [email protected] References: Paulitsch, M., Barbu, M.C., (2015) Holzwerkstoffe der Moderne, 1, , Auflage; DRW-Verlag: Leinfelden-Echterdingen, Germany, ISBN 9783871818912; Wassilieff, C., Sound absorption of wood-based materials (1996) Appl. Acoust, 48, pp. 339-356. , [CrossRef]; Dunky, M., Niemz, P., (2002) Holzwerkstoffe und Leime: Technologie und Einflussfaktoren; mit 150 Tabellen, , Springer: Berlin/Heidelberg, Germany, ISBN 978-3-540-42980-7; Botterman, B., La Doudart de Grée, G., Hornikx, M., Yu, Q.L., Brouwers, H., Modelling and optimization of the sound absorption of wood-wool cement boards (2018) Appl. Acoust, 129, pp. 144-154. , [CrossRef]; Pereira, C., Caldeira, J.F., Irle, M., Ferreira, J.M., Characterizing the setting of cement when mixed with cork, blue gum, or maritime pine, grown in Portugal I: Temperature profiles and compatibility indices (2006) J. Wood Sci, 52, pp. 311-317. , [CrossRef]; Moslemi, A.A., Lim, Y.T., Compatibility of southern hardwoods with Portland cement (1984) For. Prod. J, 34, pp. 22-26; Patel, M., Patel, K., Patel, A., Prajapati, R., Koshti, U., Study of Sawdust Concrete Properties as Construction Materials (2016) Proceedings of the 3rd International Conference on Multidisciplinary Research & Practice, , Ahmedabad, India, 24 December; Acharya, S., Neupane, U., Adhikari, S., Strength Optimization of Sawdust Concrete through Cement Variation (2020) Proceedings of 8th IOE Graduate Conference, pp. 730-736. , Kathmandu, Nepal, 5–7 June; Plotnikov, N., Kochetkov, I., Possibility of using sawdust in sawdust concrete (2021) E3S Web Conf, 244, p. 4011. , [CrossRef]; Sonntag, F., (2003) Wandbauten mit Schalungssteinen aus Holzspanbeton, , Hochschule für Technik; Wirtschaft und Kultur Leipzig: Leipzig, Germany; Vaickelionis, G., Vaickelioniene, R., Cement hydration in the presence of wood extractives and pozzolan mineral additives (2006) Ceram. Silik, 50, pp. 115-122; Frybort, S., Mauritz, R., Teischinger, A., Müller, U., Cement bonded composites—A mechanical review (2008) BioResources, 3, pp. 602-626; Lin, X., Silsbee, M.R., Roy, D.M., Kessler, K., Blankenhorn, P.R., Approaches to improve the properties of wood fiber reinforced cementitious composites (1994) Cem. Concr. Res, 24, pp. 1558-1566. , [CrossRef]; Weatherwax, R.C., Tarkow, H., Effect of Wood on Setting of Portland Cement (1964) For. Prod. J, 14, pp. 567-570; Sandermann, W., Brendel, M., Studien über mineralgebundene Holzwerkstoffe—Zweite Mitteilung: Die „zementvergiftende” Wirkung von Holzinhaltsstoffen und ihre Abhängigkeit von der chemischen Konstitution (1956) Holz als Roh-und Werkstoff, 14, pp. 307-313. , [CrossRef]; Hofstrand, A.D., Moslemi, A., Garcia, J.F., Curing characteristics of wood particles from nine northern Rocky Mountain species mixed with Portland cement (1984) For. Prod. J, 34, pp. 57-61; Garcez, M.R., Garcez, E.O., Machado, A.O., Gatto, D.A., Cement-Wood Composites: Effects of Wood Species, Particle Treatments and Mix Proportion (2016) Int. J. Compos. Mater, 6, pp. 1-8. , [CrossRef]; Li, M., Khelifa, M., El Ganaoui, M., Mechanical characterization of concrete containing wood shavings as aggregates (2017) Int. J. Sustain. Built Environ, 6, pp. 587-596. , [CrossRef]; Tudor, E.M., Zwickl, C., Eichinger, C., Petutschnigg, A., Barbu, M.C., Performance of softwood bark comminution technologies for determination of targeted particle size in further upcycling applications (2020) J. Cleaner Prod, 269, p. 122412. , [CrossRef]; Giannotas, G., Kamperidou, V., Barboutis, I., Tree bark utilization in insulating bio-aggregates: A review (2021) Biofuels Bioprod. Biorefin, 15, pp. 1989-1999. , [CrossRef]; Pásztory, Z., Mohácsiné, I.R., Gorbacheva, G., Börcsök, Z., The utilization of tree bark (2016) BioResources, 11, pp. 7859-7888. , [CrossRef]; Kain, G., Tudor, E.M., Blanchet, P., Bark Thermal Insulation Panels: An Explorative Study on the Effects of Bark Species (2020) Polymers, 12, p. 2140. , [CrossRef]; Gößwald, J., Barbu, M.C., Petutschnigg, A., Tudor, E.M., Binderless Thermal Insulation Panels Made of Spruce Bark Fibres (2021) Polymers, 13, p. 1799. , [CrossRef] [PubMed]; Kristak, L., Ruziak, I., Tudor, E.M., Barbu, M.C., Kain, G., Reh, R., Thermophysical Properties of Larch Bark Composite Panels (2021) Polymers, 13, p. 2287. , [CrossRef] [PubMed]; Tudor, E.M., Dettendorfer, A., Kain, G., Barbu, M.C., Réh, R., Krišt’ák, L., Sound-Absorption Coefficient of Bark-Based Insulation Panels (2020) Polymers, 12, p. 1012. , [CrossRef] [PubMed]; Tudor, E.M., Kristak, L., Barbu, M.C., Gergel’, T., Němec, M., Kain, G., Réh, R., Acoustic Properties of Larch Bark Panels (2021) Forests, 12, p. 887. , [CrossRef]; Tudor, E.M., Scheriau, C., Barbu, M.C., Réh, R., Krišt’ák, L., Schnabel, T., Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay (2020) Appl. Sci, 10, p. 5594. , [CrossRef]; Muszinsky, Z., McNatt, J., Investigations on the use of spruce bark in the manufacture of particleboard (1984) For. Prod. J, 34, pp. 28-35; Calve, L., Shields, J., Gravel, M., Maximizing aspen poplar residues utilization for waferboard production (1986) For. Prod. J, 36, pp. 39-45; Claude, M., Yemele, N., Blanchet, P., Cloutier, A., Koubaa, A., Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark (2008) For. Prod. J, 58, pp. 38-46; Xing, C., Deng, J., Zhang, S.Y., Effect of thermo-mechanical refining on properties of MDF made from black spruce bark (2007) Wood Sci. Technol, 41, pp. 329-338. , [CrossRef]; Nishimura, T., Chipboard, oriented strand board (OSB) and structural composite lumber (2015) Wood Composites, pp. 103-121. , Elsevier: London, UK, ISBN 9781782424543; Igaz, R., Krišt’ák, L., Ružiak, I., Gajtanska, M., Kučerka, M., Thermophysical properties of OSB boards versus equilibrium moisture content (2017) BioResources, 12, pp. 8106-8118. , [CrossRef]; Karade, S.R., Potential of Cork Cement Composite as a Thermal Insulation Material (2015) Key Eng. Mater, 666, pp. 17-29. , [CrossRef]; Mansilla, C., Pradena, M., Fuentealba, C., César, A., Evaluation of Mechanical Properties of Concrete Reinforced with Eucalyptus globulus Bark Fibres (2020) Sustainability, 12, p. 10026. , [CrossRef]; Merabti, S., Kenai, S., Belarbi, R., Khatib, J., Thermo-mechanical and physical properties of waste granular cork composite with slag cement (2021) Constr. Build. Mater, 272, p. 121923. , [CrossRef]; Karade, S.R., Irle, M., Maher, K., Influence of granule properties and concentration on cork-cement compatibility (2006) Holz als Roh-und Werkstoff, 64, pp. 281-286. , [CrossRef]; Eusebio, D.A., Yamauchi, H., Sasaki, H., Kawai, S., Bark cement composites (1996) Proceedings of the Third Pacific Rim Bio Based Composites Symposium, pp. 274-282. , Kyoto, Japan, 2–5 December; Wei, Y.M., Guang, Z.Y., Tomita, B., Hydration behavior of wood cement-based composite I: Evaluation of wood species effects on compatibility and strength with ordinary Portland cement (2000) J. Wood Sci, 46, pp. 296-302. , [CrossRef]; (1993) Wood-Based Panels—Determination of Density, , European Committee for Standardization: Brussels, Belgium; (2013) Thermal Insulating Products for Building Applications—Determination of Compression Behaviour, , European Committee for Standardization: Brussels, Belgium; Dhir, R.K., Ghataora, G.S., Lynn, C.J., Concrete-Related Applications (2017) Sustainable Construction Materials, pp. 111-158. , Elsevier: London, UK, ISBN 9780081009871; Stokke, D.D., Wu, Q., Han, G., (2014) Introduction to Wood and Natural Fiber Composites, , Wiley: Hoboken, NJ, USA, ISBN 978047071 0913; (2021) Wood-Wool Cement Bonded Boards, , http://www.isolith.com/, (accessed on 3 December 2021); (2021) Thermo-Span Baustoffwerk, , http://thermo-span.com/, (accessed on 3 December 2021)
PY - 2021/12/17
Y1 - 2021/12/17
N2 - The aim of this study is to investigate the suitability of spruce and larch bark for the production of cement-bonded composites. At the beginning of this research, the curing behaviour of the admixtures was quantified with temperature profiles when testing spruce, larch, pine and poplar bark, to determine the compatibility between the components of the bio-aggregates, to analyse the cement curing and to establish which bark species should be successfully included in cement bonded composites. Considering the results, it was observed that the average densities of 600–700 kg/m3 of bio-aggregates are 40–55% lower than that of established products on the market, although spruce and larch bark are in a similar range. The situation is different for the compressive strength, as larch bark showed up to 30% higher values than spruce bark. This study revealed also different hardening characteristics of the two cement types used as binders for spruce and larch bark. The results of this study demonstrated that tree bark of Picea abies and Larix decidua Mill. can be successfully utilized for the production of a cement-bonded composite material.
AB - The aim of this study is to investigate the suitability of spruce and larch bark for the production of cement-bonded composites. At the beginning of this research, the curing behaviour of the admixtures was quantified with temperature profiles when testing spruce, larch, pine and poplar bark, to determine the compatibility between the components of the bio-aggregates, to analyse the cement curing and to establish which bark species should be successfully included in cement bonded composites. Considering the results, it was observed that the average densities of 600–700 kg/m3 of bio-aggregates are 40–55% lower than that of established products on the market, although spruce and larch bark are in a similar range. The situation is different for the compressive strength, as larch bark showed up to 30% higher values than spruce bark. This study revealed also different hardening characteristics of the two cement types used as binders for spruce and larch bark. The results of this study demonstrated that tree bark of Picea abies and Larix decidua Mill. can be successfully utilized for the production of a cement-bonded composite material.
KW - Cement-bonded bark-based composite materials
KW - Larch
KW - Spruce
KW - Tree bark
KW - Aggregates
KW - Binders
KW - Cements
KW - Compressive strength
KW - Curing
KW - Forestry
KW - Admixture
KW - Bonded composites
KW - Cement-bonded bark-based composite material
KW - Composites material
KW - Curing behavior
KW - Property
KW - Temperature profiles
KW - Tree barks
KW - Composite materials
UR - https://www.mendeley.com/catalogue/53f5e2e2-c5be-3033-96f2-edf4ace5b2b2/
U2 - 10.3390/polym13244438
DO - 10.3390/polym13244438
M3 - Article
C2 - 34960989
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 24
ER -