TY - JOUR
T1 - Relations between chemical changes and mechanical properties of thermally treated wood
AU - Windeisen, E.
AU - Bächle, H.
AU - Zimmer, B.
AU - Wegener, G.
N1 - Cited By :123
Export Date: 14 December 2023
CODEN: HOLZA
Correspondence Address: Windeisen, E.; Holzforschung München, Winzererstr. 45, D-80797 Munich, Germany; email: [email protected]
Funding details: 811968
Funding details: Österreichische Forschungsförderungsgesellschaft, FFG
Funding text 1: Special thanks are due to Claudia Strobel, Regina Fuchs, and Nicole Armes at Holzforschung München for performing the chemical analyses. The investigations of the mechanical properties were funded by the Austrian Research Promotion Agency (FFG) in the program on Technologies For Sustainable Development: subprogram ‘‘Factory of Tomorrow’’. The NIR investigations were funded by an FFG FHplus project ( 811968).
References: Ayadi, N., Lejeune, F., Charrier, F., Charrier, B., Merlin, A., Color stability of heat-treated wood during artificial weathering (2003) Holz Roh Werkst, 61, pp. 221-226; Boonstra, M., (2008) A Two-stage Thermal Modification of Wood, , PhD Thesis, University of Ghent, Ghent; Boonstra, M., Pizzi, A., Zomers, F., Ohlmeyer, M., Paul, W., The effects of a two stage heat treatment process on the properties of particleboard (2006) Holz Roh Werkst, 64, pp. 157-164; Boonstra, M., van Acker, J., Kegel, E., Stevens, M., Optimisation of a two-stage heat treatment process: Durability aspects (2007) Wood Sci. Technol, 41, pp. 31-57; CEN/TS (2007) 15679. Thermally modified timber (TMT) - Definitions and characteristics; Epmeier, H., Johansson, M., Kliger, R., Westin, M., Bending creep performance of modified timber (2007) Holz Roh Werkst, 65, pp. 343-351; Esteves, B., Graca, J., Pereira, H., Extractive composition and summative chemical analysis of thermally treated eucalypt wood (2008) Holzforschung 62: Online, , DOI 10.1515/HF.2008.057; Fengel, D., Wegener, G., Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis (1979) L. Adv. Chem. Ser, 181, pp. 145-158. , Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Eds. Brown, R. D, Jurasek; Fengel, D., Wegener, G., Wood - Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin (2003) Reprint Kessel, , www.forstbuch.de, Remagen; Follrich, J., Müller, U., Gindl, W., Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer (2006) Holz Roh Werkst, 64, pp. 373-376; Fuchs, R., (2006) Die chemische Charakterisierung von Eschen-und Buchenthermoholz, , Diploma Thesis, TU München, München; Hill, C., Wood Modification (2006) Chemical, Thermal and Other Processes, , Wiley, Chichester; Hofer, S., Welzbacher, C. R., Rapp, A. O., Brischke, C. (2007) Erfahrungen mit Thermoholz (TMT) im Fassaden-und Gartenbereich in Tagungsband der 25. Holzschutz-Tagung der DGfH, Biberach 20-21 September 2007. pp. 143-161; Inagaki, T., Mitsui, K., Tsuchikawa, S., Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological objects. Part I (2008) Softwood. Appl. Spectrosc, 62, pp. 1209-1215; Johansson, D., Heat Treatment of Solid Wood (2008) Effects on Absorption, Strength and Colour, , PhD Thesis, Lulea University of Technology, Lulea; Kacik, F., Melcer, I., Melcerová, A., Vergleichende Charakteristik einer hydrothermischen und thermischen Behandlung von Buchenholz. (1992) Holz Roh Werkst, 50, pp. 79-84; Kamdem, P.D., Pizzi, A., Jermannaud, A., Durability of heat-treated wood (2002) Holz Roh Werkst, 60, pp. 1-6; Kotilainen, R.A., Toivanen, T.J., Alén, R.J., FTIR monitoring of chemical changes in softwood during heating (2000) J. Wood Chem. Technol, 20, pp. 307-320; Lapierre, C., Monties, B., Rolando, C., Thioacidolysis of poplar lignins: Identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions (1986) Holzforschung, 40, pp. 113-118; Månsson, P., Quantitative determination of phenolic and total hydroxyl groups in lignin (1983) Holzforschung, 37, pp. 143-146; Månsson, P., Samuelsson, B., Quantitative determination of O-acetyl and other O-acyl groups in cellulosic material (1981) Svensk Papperst, 84, pp. R15-R24; Mitsui, K., Inagaki, T., Tsuchikawa, S., Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy (2008) Biomacromolecules, 9, pp. 286-288; Nuopponen, M., Wikberg, H., Vuorinen, T., Maunau, S., Jämsä, S., Viitaniemi, P., Heat-treated wood exposed to weathering (2004) J. Appl. Polym. Sci, 91, pp. 2128-2134; Rolando, C., Thioacidolysis (1992) Methods in Lignin Chemistry, pp. 334-349. , Eds. Lin, S. Y, Dence, C. W. Springer, Berlin. pp; Runkel, R.O.H., Wilke, K.D., Zur Kenntnis des thermoplastischen Verhaltens von Holz (1951) Holz Roh Wokst, 9, pp. 260-270; Rusche, H., Festigkeitseigenschaften von trockenem Holz nach thermischer Behandlung. (1973) Holz Roh Werkst, 31, pp. 273-281; Scheiding, W., TMT im Jahr 2008: Produktion, Märkte, Normung in Tagungsband 5 (2008) Europäischer TMT-Workshop, pp. 1-6. , Dresden, 24-25 April; Schnabel, T., Zimmer, B., Petutschnigg, A.J., Schönberger, S., An approach to classify thermally modified hardwoods by color (2007) Forest Prod. J, 57, pp. 105-110; Schwanninger, M., Gierlinger, N., Hanger, J., Hansmann, C., Hinterstoisser, B., Wimmer, R., Characterization of thermally treated beech wood by UV-microspectrophotometry, FT-MIR and FTIR spectroscopy (2003) Proceedings of 12th ISWPC, 3, pp. 55-58. , Madison, WI, 9-12 June; Tjeerdsma, B.F., Militz, H., Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood (2005) Holz Roh Werkst, 63, pp. 102-111; Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Militz, H., Characterisation of thermally modified wood: Molecular reasons for wood performance improvement (1998) Holz Roh Werkst, 56, pp. 149-153; Wienhaus, O. (1999) Modifizierung des Holzes durch eine milde Pyrolyse - abgeleitet aus den allgemeinen Prinzipien der Thermolyse des Holzes. Wissenschaftl. Zeitschr. Univ. Dresden 48:17-22; Winandy, J.E., Rowell, M.R., Chemistry of wood strength (2005) Wood Chemistry and Wood Composites, pp. 303-347. , Ed. Rowell, M. R. Taylor & Francis, Boca Raton, FL. pp; Windeisen, E., Fuchs, R., Wegener, G., Chemical changes during the production of beech and ash thermowood (2006) Proceedings of 9th EWLP, pp. 579-582. , Vienna, 27-30 August; Windeisen, E., Strobel, C., Wegener, G., Chemical changes during the production of thermo-treated beech wood (2007) Wood Sci. Technol, 41, pp. 523-536; Zaman, A., Alén, R., Kotilainen, R., Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200-230°C (2000) Wood Fibre Sci, 32, pp. 138-143
PY - 2009
Y1 - 2009
N2 - Thermal treatments of wood (Fagus sylvatica and Fraxinus excelsior) were examined. The temperature load on wood causes characteristic changes in the chemical composition, which were determined by means of several defined methods. The results confirm that in addition to the degradation of polyoses lignin, known as the thermally most stable compound, also shows significant thermal alterations. In addition, mechanical properties of the specimens were examined in order to correlate these results with the effects of chemical changes of thermally treated wood. It was shown, e.g., that the decomposition of the polyoses can affect the strength properties both positively and negatively. Copyright © by Walter de Gruyter · Berlin · New York.
AB - Thermal treatments of wood (Fagus sylvatica and Fraxinus excelsior) were examined. The temperature load on wood causes characteristic changes in the chemical composition, which were determined by means of several defined methods. The results confirm that in addition to the degradation of polyoses lignin, known as the thermally most stable compound, also shows significant thermal alterations. In addition, mechanical properties of the specimens were examined in order to correlate these results with the effects of chemical changes of thermally treated wood. It was shown, e.g., that the decomposition of the polyoses can affect the strength properties both positively and negatively. Copyright © by Walter de Gruyter · Berlin · New York.
KW - Ash
KW - Beech
KW - Chemical analyses
KW - FTIR
KW - NIR
KW - Physical and mechanical properties
KW - Thermal treatment
KW - Chemical change
KW - Chemical compositions
KW - Fagus sylvatica
KW - Polyoses
KW - Strength property
KW - Temperature loads
KW - Thermal alteration
KW - Thermally treated wood
KW - Chemical analysis
KW - Chemicals
KW - Degradation
KW - Fourier transform infrared spectroscopy
KW - Heat treatment
KW - Infrared devices
KW - Wood
KW - Mechanical properties
KW - Chemical Analysis
KW - Fagus
KW - Heat Treatment
KW - Infrared Spectroscopy
KW - Mechanical Properties
KW - Physical Properties
KW - Fraxinus
KW - Fraxinus excelsior
U2 - 10.1515/HF.2009.084
DO - 10.1515/HF.2009.084
M3 - Conference article
SN - 0018-3830
VL - 63
SP - 773
EP - 778
JO - Holzforschung
JF - Holzforschung
IS - 6
ER -