Abstract
| Original language | English |
|---|---|
| Pages (from-to) | 121-139 |
| Number of pages | 19 |
| Journal | Wood Science and Technology |
| Volume | 47 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 2013 |
Keywords
- Anatomical structures
- Bimodal distribution
- Computed microtomography
- Computed Tomography
- Densified wood
- Douglas fir
- Earlywood
- Hybrid poplar
- Latewood
- Mean pore size
- Original structures
- Pore volume
- Thermal compressions
- Computerized tomography
- Pore size
- Populus
- Pseudotsuga
- Pseudotsuga menziesii
Fingerprint
Dive into the research topics of 'Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Wood Science and Technology, Vol. 47, No. 1, 2013, p. 121-139.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography
AU - Standfest, G.
AU - Kutnar, A.
AU - Plank, B.
AU - Petutschnigg, A.
AU - Kamke, F.A.
AU - Dunky, M.
N1 - Cited By :25 Export Date: 14 December 2023 CODEN: WOSTB Correspondence Address: Standfest, G.; Forest Products Technology and Timber Constructions, Markt 136a, 5431 Kuchl, Salzburg, Austria; email: [email protected] Funding details: Österreichische Forschungsförderungsgesellschaft, FFG, 198353 Funding text 1: This project was gratefully supported by the ‘FHplus in COIN’ Programme of the Austrian Research Promotion Agency (FFG) under project number 198353. References: Balatinecz, J.J., Kretschmann, D.E., Chapter 9: Properties and utilization of poplar wood (2001) Poplar Culture in North America, , D.I. Dickmann J.G. Isebrands J.E. Eckenwalder J. Richardson (eds) NRC Research Press Ottawa; Barnett, J.R., Bonham, V.A., Cellulose microfibril angle in the cell wall of wood fibres (2004) Biological Reviews of the Cambridge Philosophical Society, 79 (2), pp. 461-472. , DOI 10.1017/S1464793103006377; Blomberg, J., Persson, B., Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process (2004) Journal of Wood Science, 50 (4), pp. 307-314. , DOI 10.1007/s10086-003-0566-2; Clair, B., Maturation stress in developing tension wood. Plant physiology preview (2010) Am Soc Plant Biol, 123 (3), pp. 1650-1658; Dadswell, H.E., Hawley, L.F., Chemical composition of wood in relation to physical characteristics. A preliminary study (1929) Ind Eng Chem, 21 (10), pp. 973-975. , 10.1021/ie50238a020 1:CAS:528:DyaB1MXkvVKntg%3D%3D; Derome, D., Griffa, M., Koebel, M., Carmeliet, J., Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography (2011) J Struct Biol, 173 (1), pp. 180-190. , 20797439 10.1016/j.jsb.2010.08.011; Dogu, D., Tirak, K., Candan, Z., Unsal, O., Anatomical investigation of thermally compressed wood panels (2010) BioResources, 5 (4), pp. 2640-2663; Dwianto, W., Morooka, T., Norimoto, M., Kitajima, T., Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam (1999) Holzforschung, 53 (5), pp. 541-546. , DOI 10.1515/HF.1999.089; Fang, C.H., Guibal, D., Clair, B., Gril, J., Liu, Y.M., Liu, S.Q., Relationships between Growth Stress and Wood Properties in Poplar I-69 (Populous Deltoides Bartr.cv. "lux" Ex I-69/55) (2008) Ann for Sci, 65 (3), p. 307. , (1-9); Grabner, M., Salaberger, D., Okochi, T., The need of high resolution μ-X-ray CT in dendrochronology and in wood identification (2009) ISPA 2009. 6th International Symposium Image and Signal Processing and Analysis, pp. 349-352. , 16-18 Sept 2009, Salzburg, Austria; Proceedings, IEEE; Illman, B., Dowd, B., High-resolution microtomography for density and spatial information about wood structures (1999) Developments in X-ray tomography II. SPIE, pp. 198-204. , Bellingham. In: Bonse U (ed); Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M., Steam or heat fixation of compressed wood (1993) Wood Fiber Sci, 25 (3), pp. 224-235. , 1:CAS:528:DyaK2cXksF2qsbw%3D; Jourez, B., Riboux, A., Leclercq, A., Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv 'Ghoy') (2001) IAWA Journal, 22 (2), pp. 133-157; Kamke, F.A., Sizemore, H., (2008) Viscoelastic Thermal Compression of Wood, 7, p. 404. , USP 422; Karenlampi, P.P., Tynjala, P., Strom, P., Effect of temperature and compression on the mechanical behavior of steam-treated wood (2003) Journal of Wood Science, 49 (4), pp. 298-304. , DOI 10.1007/s10086-002-0503-9; Klasnja, B., Kopitovic, S., Orlovic, S., Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones (2003) Wood Sci Technol, 37 (3-4), pp. 331-337. , 10.1007/s00226-003-0179-3 1:CAS:528:DC%2BD3sXpvVKqsb4%3D; Kultikova, E.V., (1999) Structure and Properties Relationships of Densified Wood, , M.S. Thesis, Wood Science and Forest Products, Virginia Polytechnic Institute and State University, USA; Kutnar, A., Kamke, A.F., Compression of wood under saturated steam, superheated steam and transient conditions at 150 C, 160 C, and 170 C (2010) Wood Sci Technol, 46 (1-3), pp. 73-88; Kutnar, A., Kamke, F.A., Sernek, M., The mechanical properties of densified VTC wood relevant for structural composites (2008) Holz Roh Werkst, 66 (6), pp. 439-446. , 10.1007/s00107-008-0259-z 1:CAS:528:DC%2BD1cXhsVert7nI; Kutnar, A., Kamke, F.A., Sernek, M., Density profile and morphology of viscoelastic thermal compressed wood (2009) Wood Sci Technol, 43 (1), pp. 57-68. , 10.1007/s00226-008-0198-1 1:CAS:528:DC%2BD1MXhvVCgsLg%3D; Lux, J., Delisée, C., Thibault, X., 3D characterization of wood based fibrous materials: An application (2006) Image Anal Stereol, 25 (1), pp. 25-35. , 10.5566/ias.v25.p25-35; Mannes, D., Marone, F., Lehmann, E., Stampanoni, M., Niemz, P., Application areas of synchrotron radiation tomographic microscopy for wood research (2010) Wood Sci Technol, 44 (1), pp. 67-84. , 10.1007/s00226-009-0257-2 1:CAS:528:DC%2BC3cXmt1amsA%3D%3D; Mayo, S.C., Evans, R., Chen, F., Lagerstrom, R., X-ray phase-contrast micro-tomography and image analysis of wood microstructure (2009) J Phys, Conf ser, 186 (1), p. 12105. , 10.1088/1742-6596/186/1/012105; Mayo, S.C., Chen, F., Evans, R., Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography (2010) J Struct Biol, 171 (2), pp. 182-188. , 20382229 10.1016/j.jsb.2010.04.001 1:STN:280:DC%2BC3crgtFSqtA%3D%3D; Modzel, G., Kamke, F.A., De Carlo, F., Comparative analysis of a wood - Adhesive bondline (2011) Wood Sci Technol, 45 (1), pp. 147-158. , 10.1007/s00226-010-0304-z 1:CAS:528:DC%2BC3MXls12msw%3D%3D; Navi, P., Girardet, F., Effects of thermo-hydro-mechanical treatment on the structure and properties of wood (2000) Holzforschung, 54 (3), pp. 287-293. , DOI 10.1515/HF.2000.048; Okochi, T., Hoshino, Y., Fujii, H., Mitsutani, T., Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography (2007) Dendrochronologia, 24 (2-3), pp. 155-164. , DOI 10.1016/j.dendro.2006.10.010, PII S1125786506000415, EuroDendro 2005: Humans and Environment; Otsu, N., Threshold selection method from gray-level histograms (1979) IEEE Trans Syst Man Cybern, SMC-9 (1), pp. 62-66; Pfriem, A., Zauer, M., Wagenführ, A., Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry (2009) Holzforschung, 63 (1), pp. 94-98. , 10.1515/HF.2009.027 1:CAS:528:DC%2BD1MXhs1Kgurk%3D; Schneider, A., Beitrag zur Porositätsanalyse von Holz mit dem Quecksilber- Porosimeter (1979) Eur J Wood Wood Prod, 37 (8), pp. 295-302. , 10.1007/BF02607491; Schneider, A., Untersuchungen über die Porenstruktur von Holzspanplatten mit Hilfe der Quecksilber-Porosimetrie (1982) Holz Roh Werkst, 40 (12), pp. 415-420. , 10.1007/BF02609586; Schneider, A., Wagner, L., Bestimmung der Porengrößenverteilung in Holz mit dem Quecksilber-Porosimeter (1974) Eur J Wood Wood Prod, 32 (6), pp. 216-224. , 10.1007/BF02607257; Scholz, G., Zauer, M., Van Den Bulcke, J., Van Loo, D., Pfriem, A., Van Acker, J., Militz, H., Investigation on wax-impregnated wood. Part 2: Study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging (2010) Holzforschung, 64 (5), pp. 587-593. , 1:CAS:528:DC%2BC3cXht12isL%2FE; Schweitzer, F., Niemz, P., Untersuchungen zum Einfluß ausgewählter Strukturparameter auf die Porosität von Spanplatten (1991) Holz Roh Werkst, 49 (1), pp. 27-29. , 10.1007/BF02627532 1:CAS:528:DyaK3MXksFaisLk%3D; Seborg, R.M., Millet, M.A., Stamm, A.J., Heat-stabilized compressed wood (Staypak) (1945) Mech Eng, 67, pp. 25-31; Standfest, G., Kranzer, S., Petutschnigg, A., Dunky, M., Determination of the microstructure of an adhesive-bonded medium density fiberboard (MDF) using 3D sub-micrometer computer tomography (2010) J Adhes Sci Technol, 24 (8), pp. 1501-1514. , 10.1163/016942410X501052 1:CAS:528:DC%2BC3cXhsVKksbnM; Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stahli, P., Kaestner, A., Stampanoni, M., 3D imaging of microstructure of spruce wood (2007) Journal of Structural Biology, 159 (1), pp. 46-55. , DOI 10.1016/j.jsb.2007.02.003, PII S1047847707000408; Winandy, J.E., Morrell, J.J., Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood (1993) Wood Fiber Sci, 25 (3), pp. 278-288. , 1:CAS:528:DyaK2cXkvVKjs74%3D; Wolcott, M.P., (1989) Modelling Viscoelastic Cellular Materials for the Pressing of Wood Composites, p. 182. , PhD Dissertation. Virginia Tech, Blacksburg, Virginia
PY - 2013
Y1 - 2013
N2 - The paper describes for the first time the analysis of the structure of compressed wood using computed tomography. The anatomical structures of Douglas-fir and hybrid poplar before and after densification with the viscoelastic thermal compression (VTC) process were described by pore size distributions and mean pore sizes and compared. The compression of Douglas-fir mainly affected earlywood, while the compression of hybrid poplar mainly occurred in the vessels. In both wood species, the densification resulted in a significant decrease in the pore volumes. The porosity decreased to less than half of the original value for Douglas-fir earlywood and to approximately one-quarter for the vessels in hybrid poplar. The relevant mean pore sizes also decreased dramatically to about one-quarter compared to the original values. In contrast, latewood in Douglas-fir and libriform fibers in hybrid poplar are quite stable under compression. Douglas-fir latewood retained its original structure after compression and did not show any reduction in pore size. The results confirmed that the anatomical structure of VTC densified wood can be described by pore size distributions and mean pore sizes. However, in the case of broad or bimodal distributions, the mean pore sizes are of less significance. © 2012 Springer-Verlag.
AB - The paper describes for the first time the analysis of the structure of compressed wood using computed tomography. The anatomical structures of Douglas-fir and hybrid poplar before and after densification with the viscoelastic thermal compression (VTC) process were described by pore size distributions and mean pore sizes and compared. The compression of Douglas-fir mainly affected earlywood, while the compression of hybrid poplar mainly occurred in the vessels. In both wood species, the densification resulted in a significant decrease in the pore volumes. The porosity decreased to less than half of the original value for Douglas-fir earlywood and to approximately one-quarter for the vessels in hybrid poplar. The relevant mean pore sizes also decreased dramatically to about one-quarter compared to the original values. In contrast, latewood in Douglas-fir and libriform fibers in hybrid poplar are quite stable under compression. Douglas-fir latewood retained its original structure after compression and did not show any reduction in pore size. The results confirmed that the anatomical structure of VTC densified wood can be described by pore size distributions and mean pore sizes. However, in the case of broad or bimodal distributions, the mean pore sizes are of less significance. © 2012 Springer-Verlag.
KW - Anatomical structures
KW - Bimodal distribution
KW - Computed microtomography
KW - Computed Tomography
KW - Densified wood
KW - Douglas fir
KW - Earlywood
KW - Hybrid poplar
KW - Latewood
KW - Mean pore size
KW - Original structures
KW - Pore volume
KW - Thermal compressions
KW - Computerized tomography
KW - Pore size
KW - Populus
KW - Pseudotsuga
KW - Pseudotsuga menziesii
U2 - 10.1007/s00226-012-0496-5
DO - 10.1007/s00226-012-0496-5
M3 - Article
SN - 0043-7719
VL - 47
SP - 121
EP - 139
JO - Wood Science and Technology
JF - Wood Science and Technology
IS - 1
ER -