@article{801569d429ad4b93bd7263b6fe7dd441,
title = "Influence of Data Granularity on Smart Meter Privacy",
abstract = "Through smart metering in the smart grid end-user domain, load profiles are measured per household. Personal data can be inferred from these load profiles by using nonintrusive appliance load monitoring methods, which has led to privacy concerns. Privacy is expected to increase with longer intervals between measurements of load curves. This paper studies the impact of data granularity on edge detection methods, which are the common first step in nonintrusive load monitoring algorithms. It is shown that when the time interval exceeds half the on-time of an appliance, the appliance use detection rate declines. Through a one-versus-rest classification modeling, the ability to detect an appliance's use is evaluated through F-scores. Representing these F-scores visually through a heatmap yields an easily understandable way of presenting potential privacy implications in smart metering to the end-user or other decision makers. {\textcopyright} 2010-2012 IEEE.",
keywords = "Data granularity, privacy, smart metering, Algorithms, Decision making, Edge detection, Electric load management, Electric measuring instruments, Heating, Smart meters, Smart power grids, Classification models, Edge detection methods, Measurements of, Non-intrusive appliance load monitoring, Nonintrusive load monitoring, Privacy concerns, Smart metering, Data privacy",
author = "G. Eibl and D. Engel",
note = "Cited By :79 Export Date: 14 December 2023 References: Segovia, R., S{\'a}nchez, M., Set of common functional requirements of the smart meter (2011) DG INFSO and DG ENER, , http://ec.europa.eu/energy/gas\_electricity/smartgrids/doc/2011\_10\_smart\_meter\_funtionalities\_report\_full.pdf, European Commission, Brussels, Belgium, Tech. Rep. 73, Oct; Lisovich, M., Mulligan, D., Wicker, S., Inferring personal information from demand-response systems (2010) IEEE Security Privacy, 8 (1), pp. 11-20. , Jan./Feb; Cavoukian, A., Polonetsky, J., Wolf, C., SmartPrivacy for the smart grid: Embedding privacy into the design of electricity conservation (2010) Identity Inf. Soc., 3 (2), pp. 275-294. , http://dx.doi.org/10.1007/s12394-010-0046-y; Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D., Private memoirs of a smart meter (2010) Proc. 2nd ACM Workshop Embedded Sens. Syst. Energy-Eff. Build. (BuildSys), pp. 61-66. , http://doi.acm.org/10.1145/1878431.1878446, New York, NY, USA; Efthymiou, C., Kalogridis, G., Smart grid privacy via anonymization of smart metering data (2010) Proc. 1st IEEE Int. Conf. Smart Grid Commun., pp. 238-243. , Gaithersburg, MD, USA Oct; Engel, D., Wavelet-based load profile representation for smart meter privacy (2013) Proc. IEEE PES Innov. Smart Grid Technol. (ISGT), pp. 1-6. , http://dx.doi.org/10.1109/ISGT.2013.6497835, Washington, DC, USA Feb; Engel, D., Eibl, G., Multi-resolution load curve representation with privacy-preserving aggregation (2013) Proc. IEEE Innov. Smart Grid Technol. (ISGT), pp. 1-5. , Copenhagen, Denmark Oct; Eibl, G., Engel, D., Influence of data granularity on nonintrusive appliance load monitoring (2014) Proc. 2nd ACM Workshop Inf. Hiding Multimedia Security, pp. 147-151. , http://doi.acm.org/10.1145/2600918.2600920, Salzburg, Austria; Hart, G., Nonintrusive appliance load monitoring (1992) Proc. IEEE, 80 (12), pp. 1870-1891. , Dec; Zeifman, M., Roth, K., Nonintrusive appliance load monitoring: Review and outlook (2011) IEEE Trans. Consum. Electron., 57 (1), pp. 76-84. , Feb; Bergman, D.C., Distributed non-intrusive load monitoring (2011) Proc. IEEE/PES Conf. Innov. Smart Grid Technol. (ISGT), pp. 1-8. , Anaheim, CA, USA Jan; Baranski, M., Voss, J., Genetic algorithm for pattern detection in NIALM systems (2004) Proc. IEEE Int. Conf. Syst. Man Cybern., pp. 3462-3468. , The Hague, The Netherlands; Vogiatzis, E., Kalogridis, G., Denic, S.Z., Real-time and low cost energy disaggregation of coarse meter data (2013) Proc. 4th IEEE PES Innov. Smart Grid Technol. Europe (ISGT Europe), pp. 1-5. , Lyngby, Denmark; Kolter, J.Z., Jaakkola, T., Approximate inference in additive factorial HMMs with application to energy disaggregation (2012) J. Mach. Learn. Res. Proc. Track, 22, pp. 1472-1482. , Apr; Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J., Unsupervised disaggregation of low frequency power measurements (2011) Proc. 11th SIAM Int. Conf. Data Min., pp. 747-758. , Mesa, AZ, USA; Parson, O., Ghosh, S., Weal, M., Rogers, A., Non-intrusive load monitoring using prior models of general appliance types (2012) Proc. 26th Conf. Artif. Intell. (AAAI), pp. 356-362. , Toronto, ON, Canada; Greveler, U., Justus, B., L{\"o}hr, D., Multimedia content identification through smart meter power usage profiles (2012) Proc. Int. Conf. Inf. Knowl. Eng. (IKE), , Las Vegas, NV, USA; Marchiori, A., Hakkarinen, D., Han, Q., Earle, L., Circuit-level load monitoring for household energy management (2011) Pervasive Comput., 10 (1), pp. 40-48. , Jan./Mar; Kolter, J., Johnson, M., REDD: A public data set for energy disaggregation research (2011) Proc. Workshop Data Min. Appl. Sustain. (SIGKDD), pp. 1-6. , San Diego, CA, USA",
year = "2015",
doi = "10.1109/TSG.2014.2376613",
language = "English",
volume = "6",
pages = "930--939",
journal = "IEEE Transactions on Smart Grid",
issn = "1949-3053",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "2",
}