Abstract
| Original language | English |
|---|---|
| Pages (from-to) | 617-639 |
| Number of pages | 23 |
| Journal | Multimedia Syst |
| Volume | 22 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 2016 |
Keywords
- Encryption
- Face detection
- JPEG
- Parallelization
- Region of interest
- Subjective evaluation
- Face recognition
- Image segmentation
- Monitoring
- Security systems
- Design and implementations
- Encryption and decryption
- Parallelizations
- Subjective evaluations
- Surveillance systems
- Video surveillance systems
- Cryptography
Fingerprint
Dive into the research topics of 'Building a post-compression region-of-interest encryption framework for existing video surveillance systems: Challenges, obstacles and practical concerns'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Multimedia Syst, Vol. 22, No. 5, 2016, p. 617-639.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Building a post-compression region-of-interest encryption framework for existing video surveillance systems: Challenges, obstacles and practical concerns
AU - Unterweger, A.
AU - Van Ryckegem, K.
AU - Engel, D.
AU - Uhl, A.
N1 - Cited By :8 Export Date: 14 December 2023 CODEN: MUSYE Correspondence Address: Unterweger, A.; Department of Computer Sciences, Jakob-Haringer-Straße 2, Austria; email: [email protected] Funding details: DOD Counterdrug Technology Development Program Office Funding details: Österreichische Forschungsförderungsgesellschaft, FFG, 832082 Funding text 1: The authors would like to thank Stefan Auer and Alexander Bliem for their initial involvement in the region-of-interest encryption implementation and their ideas for DC correction. In addition, the authors would like to thank Heinz Hofbauer for his valuable suggestions regarding the face detection performance assessment and the image metrics used for security evaluation. Furthermore, the authors thank all the volunteering participants of their face encryption survey. Moreover, the authors thank KeyLemon for providing higher data limits per time unit for batch face detection. Portions of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office. This work is supported by FFG Bridge project 832082. References: Auer, S., Bliem, A., Engel, D., Uhl, A., Unterweger, A., Bitstream-based JPEG encryption in real-time (2013) Int. J. Digit Crime Forensics, 5 (3), pp. 1-14; Bergeron, C., Lamy-Bergor, C., Compliant selective encryption for H.264/AVC video streams (2005) Proceedings of the IEEE workshop on multimedia signal processing, MMSP’05, pp. 1-4; Boult, T.E., PICO: privacy through invertible cryptographic obscuration (2005) IEEE/NFS Workshop on computer vision for interactive and intelligent environments, pp. 27-38. , Lexington, KY, USA; Carrillo, P., Kalva, H., Magliveras, S., Compression independent reversible encryption for privacy in video surveillance (2009) EURASIP J. Inf. Secur., 2009, pp. 1-13; Chattopadhyay, A., Boult, T., PrivacyCam: a privacy preserving camera using uclinux on the blackfin DSP (2007) IEEE conference on computer vision and pattern recognition 2007 (CVPR’07), pp. 1-8. , Minneapolis, MN: USA; Cheung, S.S., Paruchuri, J.K., Nguyen, T.P., Managing privacy data in pervasive camera networks (2008) IEEE International conference on image processing 2008 (ICIP’08), pp. 1676-1679. , San Diego, CA: USA; Choi, S., Han, J.W., Cho, H., Privacy-preserving H.264 video encryption scheme (2011) ETRI J., 33 (6), pp. 935-944; Dufaux, F., Ebrahimi, T., Scrambling for Anonymous visual communications (2005) Proceedings of SPIE, applications of digital image processing XXVIII, vol. 5909. SPIE; Dufaux, F., Ebrahimi, T., Scrambling for privacy protection in video surveillance systems (2008) IEEE Trans. Circuits Syst. Video Technol., 18 (8), pp. 1168-1174; Dufaux, F., Ebrahimi, T., A framework for the validation of privacy protection solutions in video surveillance (2010) Proceedings of the IEEE international conference on multimedia and Expo. ICME ’10, pp. 66-71. , IEEE, Singapore; Dufaux, F., Ouaret, M., Abdeljaoued, Y., Navarro, A., Vergnenegre, F., Ebrahimi, T., Privacy enabling technology for video surveillance (2006) SPIE mobile multimedia/image processing for military and security applications, , Lecture Notes in Computer Science, IEEE; Engel, D., Uhl, A., Unterweger, A., Region of Interest signalling for encrypted JPEG images (2013) IH&MMSec’13: Proceedings of the 1st ACM Workshop on information hiding and multimedia security, pp. 165–174. ACM; Hofbauer, H., Uhl, A., An effective and efficient visual quality index based on local edge gradients (2011) IEEE 3rd European workshop on visual information processing, p. 6. , Paris: France; Iqbal, R., Shahabuddin, S., Shirmohammadi, S., Compressed-domain spatial adaptation resilient perceptual encryption of live H.264 video (2010) 2010 10th international conference on information sciences signal processing and their applications (ISSPA), pp. 472-475; (2007) Itu-T, H. 264: Advanced video coding for generic audiovisual services, , http://www.itu.int/rec/T-REC-H.264-200711-I/en; Jain, V., Learned-Miller, E., Fddb: a benchmark for face detection in unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts (2010) Amherst, , http://people.cs.umass.edu/elm/papers/fddb; (2012) Chrominance subsampling in digital images, , http://dougkerr.net/pumpkin/articles/Subsampling, Kerr, D.A.:(2012); Khan, M., Jeoti, V., Malik, A., Perceptual encryption of JPEG compressed images using DCT coefficients and splitting of DC coefficients into bitplanes (2010) 2010 International conference on intelligent and advanced systems (ICIAS), pp. 1-6; Kim, Y., Yin, S., Bae, T., Ro, Y., A selective video encryption for the region of interest in scalable video coding (2007) Proceedings of the TENCON 2007-IEEE region 10 conference, pp. 1-4. , Taipei, Taiwan; Kwon, S.G., Choi, W.I., Jeon, B., Digital video scrambling using motion vector and slice relocation (2005) Proceedings of second international conference of image analysis and recognition. ICIAR’05, Lecture Notes in Computer Science, vol. 3656, pp. 207-214. , Springer, Toronto, Canada; Lian, S., Sun, J., Wang, Z., A novel image encryption scheme based-on jpeg encoding (2004) Proceedings of the eighth international conference on information visualisation 2004 (IV 2004), pp. 217-220; Lian, S., Sun, J., Zhang, D., Wang, Z., A selective image encryption scheme based on JPEG2000 codec (2004) Proceedings of the 5th Pacific Rim conference on multimedia, pp. 65-72. , Aizawa YNK, Satoh S, (eds), Lecture Notes in Computer Science, 3332, Springer, Berlin; Lienhart, R., Maydt, J., An extended set of Haar-like features for rapid object detection (2002) 2002 international conference on image processing vol. 1, pp. I-900–I-903; Martinez-Ponte, I., Desurmont, X., Meessen, J., Delaigle, J.F., Robust human face hiding ensuring privacy (2005) Proceedings of the 6th international workshop on image analysis for multimedia interactive services (WIAMIS’05); Melle, A., Dugelay, J.L., Scrambling faces for privacy protection using background self-similarities (2014) 21st IEEE international conference on image processing (ICIP 2014). IEEE, , Paris: France; Newton, E., Sweeney, L., Malin, B., Preserving privacy by de-identifying face images (2005) IEEE Trans. Knowl. Data Eng., 17 (2), pp. 232-243; Niu, X., Zhou, C., Ding, J., Yang, B., JPEG encryption with file size preservation (2008) International conference on intelligent information hiding and multimedia signal processing 2008 (IIHMSP ’08), pp. 308-311; Phillips, P., Moon, H., Rizvi, S., Rauss, P., The FERET evaluation methodology for face-recognition algorithms (2000) IEEE Trans. Pattern Anal. Mach. Intell., 22 (10), pp. 1090-1104; Phillips, P., Wechsler, H., Huang, J., Rauss, P.J., The FERET database and evaluation procedure for face-recognition algorithms (1998) ImageVis. Comput., 16 (5), pp. 295-306; Puech, W., Rodrigues, J.M., Crypto-compression of medical images by selective encryption of DCT (2005) European signal processing conference 2005 (EUSIPCO’05); Puech, W., Rodrigues, J.M., Analysis and cryptanalysis of a selective encryption method for JPEG images (2007) WIAMIS ’07: Proceedings of the eight international workshop on image analysis for multimedia interactive services. IEEE Computer Society, , Washington, DC: USA; Puech, W., Bors, A., Rodrigues, J., Protection of colour images by selective encryption (2013) Advanced Color Image Processing and Analysis, pp. 397-421. , Fernandez-Maloigne C, (ed), Springer, New York; Rahman, S.M.M., Hossain, M.A., Mouftah, H., Saddik, A.E., Okamoto, E., A real-time privacy-sensitive data hiding approach based on chaos cryptography (2010) Proceedings of IEEE international conference on multimedia and Expo, pp. 72-77. , Suntec City, Singapore; Rajpoot, Q.M., Jensen, C.D., Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T., Security and privacy in video surveillance: requirements and challenges (2014) ICT Systems security and privacy protection, IFIP Advances in information and communication technology, vol. 428, pp. 169-184. , Springer, Berlin Heidelberg; Santana, M.C., Déniz-Suárez, O., Hernández-Sosa, D., Lorenzo, J., A comparison of face and facial feature detectors based on the viola-jones general object detection framework (2011) Mach. Vis. Appl., 22 (3), pp. 481-494; Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.L., Ekin, A., Connell, J., Lu, M., Enabling video privacy through computer vision (2005) IEEE Secur. Priv., 3 (3), pp. 50-57; Seshadrinathan, K., Soundararajan, R., Bovik, A., Cormack, L., Study of subjective and objective quality assessment of video (2010) IEEE Trans. Image Proces., 19 (6), pp. 1427-1441; Sohn, H., Anzaku, E., Neve, W.D., Ro, Y.M., Plataniotis, K., Privacy protection in video surveillance systems using scalable video coding (2009) Proceedings of the sixth IEEE international conference on advanced video and signal based surveillance, pp. 424-429. , Genova, Italy; Sohn, H., Lee, D., De Neve, W., Plataniotis, K.N., Ro, Y.M., Objective and subjective evaluation of content-based privacy protection of face images in video surveillance systems using JPEG XR (2013) Effective Surveillance for Homeland Security: Balancing Technology and Social Issues, pp. 111-140. , Flammini F, Setola R, Franceschetti G, (eds), CRC Press, Boca Raton; Sun, Y., Wang, X., Tang, X., Deep convolutional network cascade for facial point detection (2013) Proceedings of the 2013 IEEE conference on computer vision and pattern recognition. CVPR ’13, pp. 3476-3483. , IEEE Computer Society, Washington, DC, USA; Tang, L., Methods for encrypting and decrypting MPEG video data efficiently (1996) Proceedings of the ACM multimedia 1996, pp. 219-229. , Boston: USA; Tong, L., Dai, F., Zhang, Y., Li, J., Restricted H.264/AVC video coding for privacy region scrambling (2010) 2010 17th IEEE international conference on image processing (ICIP), pp. 2089-2092; Unterweger, A., Uhl, A., Length-preserving bit-stream-based JPEG Encryption (2012) MM&Sec’12: Proceedings of the 14th ACM multimedia and security workshop, pp. 85–89. ACM; (2014) Signal processing: image communication, , Unterweger, A., Uhl, A.: Slice groups for post-compression region of interest encryption in H.264/AVC and its scalable extension.(). Accepted; Viola, P., Jones, M., Robust real-time object detection (2001) Int. J. Comput. Vis., 57, pp. 137-154; Wen, J., Severa, M., Zeng, W., Luttrell, M., Jin, W., A format-compliant configurable encryption framework for access control of video (2002) IEEE Trans. Circuits Syst. Video Technol., 12 (6), pp. 545-557; Wu, C.P., Kuo, C.C.J., (2000) Fast encryption methods for audiovisual data confidentiality. SPIE Photonics East—symposium on voice. Video, and data communications, vol. 4209, pp, 284-295. , MA, USA, Boston; Yang, B., Zhou, C.Q., Busch, C., Niu, X.M., Transparent and perceptually enhanced JPEG image encryption (2009) 16th international conference on digital signal processing, pp. 1-6; Ye, Y., Zhengquan, X., Wei, L., A Compressed video encryption approach based on spatial shuffling (2006) 8th International conference on signal processing, vol. 4, pp. 16-20; Zeng, W., Lei, S., Efficient frequency domain selective scrambling of digital video (2003) IEEE Trans. Multimed., 5 (1), pp. 118-129
PY - 2016
Y1 - 2016
N2 - We propose an encryption framework design and implementation which add region-of-interest encryption functionality to existing video surveillance systems with minimal integration and deployment effort. Apart from region-of-interest detection, all operations take place at bit-stream level and require no re-compression whatsoever. This allows for very fast encryption and decryption speed at negligible space overhead. Furthermore, we provide both objective and subjective security evaluations of our proposed encryption framework. Furthermore, we address design- and implementation-related challenges and practical concerns. These include modularity, parallelization and, most notably, the performance of state-of-the-art face detectors. We find that their performance, despite their frequent use in surveillance systems, is not insufficient for practical purposes, both in terms of speed and detection accuracy. © 2015, Springer-Verlag Berlin Heidelberg.
AB - We propose an encryption framework design and implementation which add region-of-interest encryption functionality to existing video surveillance systems with minimal integration and deployment effort. Apart from region-of-interest detection, all operations take place at bit-stream level and require no re-compression whatsoever. This allows for very fast encryption and decryption speed at negligible space overhead. Furthermore, we provide both objective and subjective security evaluations of our proposed encryption framework. Furthermore, we address design- and implementation-related challenges and practical concerns. These include modularity, parallelization and, most notably, the performance of state-of-the-art face detectors. We find that their performance, despite their frequent use in surveillance systems, is not insufficient for practical purposes, both in terms of speed and detection accuracy. © 2015, Springer-Verlag Berlin Heidelberg.
KW - Encryption
KW - Face detection
KW - JPEG
KW - Parallelization
KW - Region of interest
KW - Subjective evaluation
KW - Face recognition
KW - Image segmentation
KW - Monitoring
KW - Security systems
KW - Design and implementations
KW - Encryption and decryption
KW - Parallelizations
KW - Subjective evaluations
KW - Surveillance systems
KW - Video surveillance systems
KW - Cryptography
U2 - 10.1007/s00530-015-0473-6
DO - 10.1007/s00530-015-0473-6
M3 - Article
SN - 0942-4962
VL - 22
SP - 617
EP - 639
JO - Multimedia Syst
JF - Multimedia Syst
IS - 5
ER -